; CLCORPRM ;--------------------------------------------------------------- ;! Parameter adverb array for task CLCOR ;# ADVERB CALIBRATION ;----------------------------------------------------------------------- ;; Copyright (C) 1995 ;; Associated Universities, Inc. Washington DC, USA. ;; ;; This program is free software; you can redistribute it and/or ;; modify it under the terms of the GNU General Public License as ;; published by the Free Software Foundation; either version 2 of ;; the License, or (at your option) any later version. ;; ;; This program is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;; GNU General Public License for more details. ;; ;; You should have received a copy of the GNU General Public ;; License along with this program; if not, write to the Free ;; Software Foundation, Inc., 675 Massachusetts Ave, Cambridge, ;; MA 02139, USA. ;; ;; Correspondence concerning AIPS should be addressed as follows: ;; Internet email: aipsmail@nrao.edu. ;; Postal address: AIPS Project Office ;; National Radio Astronomy Observatory ;; 520 Edgemont Road ;; Charlottesville, VA 22903-2475 USA ;----------------------------------------------------------------------- ;--------------------------------------------------------------- CLCORPRM LLLLLLLLLLLLUUUUUUUUUUUU CCCCCCCCCCCCCCCCCCCCCCCCCCCCC ---------------------------------------------------------------- CLCORPRM Type: Adverb (Real(20)) Use: The task specific parameters for CLCOR. The details depend on the OPCODE selected. Null value: Usually 0. Tasks: CLCOR Makes a number of possible correstions to a CL table. Contents are given as a function of the value of OPCODE. 'POLR' => Modify Right-Left phase difference using phases in CLCORPRM (deg); up to 20 IFs may be processed at a time. 'PHAS' => Rotate phase of residual gain by CLCORPRM(1) degrees. CLCORPRM(2) = rate of change of phase (degrees/day) CLCORPRM(3) - (6) = day, hr, min, sec at which the "zero" phase (CLCORPRM(1)) is specified. 'OPAC' => apply atmospheric opacity amplitude corrections using zenith opacity of CLCORPRM(1) nepers. 'ADEL' => Correct phases, delays and rates for neutral atmospheric delay. CLCORPRM(1) = total pressure (mbars) at station, NOT at sea level. CLCORPRM(2) = partial pressure of water. CLCORPRM(3) = Temperature (C) CLCORPRM(4) = Tropospheric lapse rate (K/km) (should be negative) CLCORPRM(5) = Height of tropopause (km) CLCORPRM(6) = Scale height of water vapor (km). 'GAIN' => Correct using polynominal gain curve for antenna gain as a function of the zenith angle (ZA) in degrees. correction = CLCORPRM(1) + ZA * CLCORPRM(2) + ZA * ZA * CLCORPRM(3) ... 'CLOC' => Correct residual delay and model parms for the effects of a linear clock drift at a particular antenna. CLCORPRM(1) = rate of change of station clock (nanosec/day) CLCORPRM(2) = clock value at the "zero" time specified by CLCORPRM(3)-(6) (nanosec) CLCORPRM(3) - (6) = day, hr, min, sec at which the "zero" clock (CLCORPRM(2)) is specified. CLCORPRM(7) : correction has three modes, if = 0 then the clock drift is added as a small correction and CLCORPRM(2) is ignored. if = 1 then the total correction set by the CLCORPRMS is added. if = 2 then the values present in the CL table are replaced by those defined by CLCORPRM(1)-CLCORPRM(6). 'PANG' => Add or remove parallactic angle corrections from CL table entries. CLCORPRM(1) > 0 => Add corrections CLCORPRM(1) =< 0 => Remove corrections 'PONT' => Correct for predictable pointing offset of an antenna. CLCORPRM(1) is the linear rate of change of antenna gain as the pointing drifts. 'IONS' => Make ionispheric Faraday rotation corrections using one of several models. CLCORPRM(1) = Model type: 1 = Chiu model, CLCORPRM(3) = Sunspot no. 'ANTP' => Correct antenna position; corrections are values to be added to the old positions in meters. 1 = "X" correction. 2 = "Y" correction. 3 = "X" correction. 4 .GE. 1 => Left handed coordinates. 'PCAL' => MkIII manual phase cal; replace the gain correction in the CL table with unit vectors with phases given in CLCORPRM. CLCORPRM(1) corresponds to BIF etc. Phases are given in degrees. 'SBDL' => Add a delay to the IF residual delays. Values given in CLCORPRM correspond to IFs BIF, BIF+1,... EIF in nanosec. Also modifies phase. ----------------------------------------------------------------