AIPS HELP file for BPWGT in 31DEC24
As of Mon Oct 14 9:18:28 2024
BPWGT: Calibrate data, scales weights by bandpass correction
INPUTS
INNAME Input UV file name (name)
INCLASS Input UV file name (class)
INSEQ 0.0 9999.0 Input UV file name (seq. #)
INDISK 0.0 9.0 Input UV file disk unit #
SOURCES Source name
QUAL -10.0 Calibrator qualifier -1=>all
CALCODE Calibrator code ' '=>all
STOKES Stokes of output
TIMERANG Time range to use
SELBAND Bandwidth to select (kHz)
SELFREQ Frequency to select (MHz)
FREQID Freq. ID to select.
SUBARRAY 0.0 1000.0 Sub-array, 0=>all
BIF Low IF number to do
EIF Highest IF number to do
BCHAN 0.0 First channel included
ECHAN 0.0 last channel included
DOCALIB -1.0 101.0 > 0 calibrate data & weights
> 99 do NOT calibrate weights
GAINUSE CL (or SN) table to apply
DOPOL -1.0 10.0 If >0.5 correct polarization.
PDVER PD table to apply (DOPOL>0)
BLVER BL table to apply.
FLAGVER Flag table version
DOBAND 1.0 10.0 Must apply BP correction
Method used depends on value
of DOBAND (see HELP file).
BPVER Bandpass table version
SMOOTH Smoothing function. See
HELP SMOOTH for details.
DOACOR Include autocorrelations?
OUTNAME Output UV file name (name)
OUTCLASS Output UV file name (class)
OUTSEQ -1.0 9999.0 Output UV file name (seq. #)
OUTDISK 0.0 9.0 Output UV file disk unit #.
WEIGHTIT 0.0 2.0 0 - use BP, 1 - use sqrt(BP),
2 - use BP^0.25
FQCENTER >= 0 -> center frequency axis
BADDISK Disks to avoid for scratch
HELP SECTION
BPWGT
Task: Normally, the signal-to-noise ratio of spectral data is assumed
to be independent of channel except for the outermost 1 or 2
channels (which are affected by aliasing). It is widely seen
however that the noise in the outer channels after bandpass
correction is rather larger than in the central channels. This
task allows the user to presume instead that the noise is the
same in each spectral channel BEFORE application of the
bandpass correction. It will copy the data applying
calibration and changing the weights by a factor of one over
the bandpass amplitude correction squared. Use this task as a
form of SPLIT to apply the bandpass (and other) calibrations if
you wish to down-weight the outer channels in this way.
Adverbs:
INNAME.....Input UV file name (name). Standard defaults.
INCLASS....Input UV file name (class). Standard defaults.
INSEQ......Input UV file name (seq. #). 0 => highest.
INDISK.....Disk drive # of input UV file. 0 => any.
SOURCES....Source to be copied. ' '=> all; if any starts with a
'-' then all except ANY source named.
QUAL.......Qualifier of source to be copied. -1 => all.
CALCODE....Calibrator code of sources to copy. ' '=> all.
STOKES.....Specifies which STOKES parameters are written in the
output data set: ' ' => 'FULL'
'I','Q','U','V', 'IV', 'IQU', 'IQUV'
'RR','LL', 'RL', 'LR', 'RRLL', 'RLLR', 'RLRL'
'VV','HH', 'VH', 'HV', 'VVHH', 'VHHV', 'VHVH'
'HALF', 'CROS', and 'FULL' have sensible interpretations
depending on the Stokes present in the data. The last in
each of the 3 rows above == 'FULL'. Note that many
combinations of polarizations in the input and values
above are not supported.
TIMERANG...Time range of the data to be copied. In order: Start day,
hour, min. sec, end day, hour, min. sec. Days relative to
ref. date.
SELBAND....Bandwidth of data to be selected. If more than one IF is
present SELBAND is the width of the first IF required.
Units = kHz. For data which contain multiple
bandwidths/frequencies the task will insist that some form
of selection be made by frequency or bandwidth.
SELFREQ....Frequency of data to be selected. If more than one IF is
present SELFREQ is the frequency of the first IF required.
Units = MHz.
FREQID.....Frequency identifier to select (you may determine which is
applicable from the OPTYPE='SCAN' listing produced by
LISTR). If either SELBAND or SELFREQ are set, their values
override that of FREQID. However, setting SELBAND and
SELFREQ may result in an ambiguity. In that case, the task
will request that you use FREQID.
SUBARRAY...Sub-array number to copy. 0=>all.
BIF........First IF to include. 0 -> 1.
EIF........Last IF to include. 0 -> max.
BCHAN......First channel to copy. 0=>all.
ECHAN......Highest channel to copy. 0=>all higher than BCHAN
DOCALIB....If true (>0), calibrate the data using information in the
specified Cal (CL) table for multi-source or SN table for
single-source data. Also calibrate the weights unless
DOCALIB > 99 (use this for old non-physical weights).
GAINUSE....version number of the CL table to apply to multi-source
files or the SN table for single source files.
0 => highest.
DOPOL......If > 0 then correct data for instrumental polarization as
represented in the AN or PD table. This correction is
only useful if PCAL has been run or feed polarization
parameters have been otherwise obtained. See HELP DOPOL
for available correction modes: 1 is normal, 2 and 3 are
for VLBI. 1-3 use a PD table if available; 6, 7, 8 are
the same but use the AN (continuum solution) even if a PD
table is present.
PDVER......PD table to apply if PCAL was run with SPECTRAL true and
0 < DOPOL < 6. <= 0 => highest.
BLVER......Version number of the baseline based calibration (BL) table
to apply. <0 => apply no BL table, 0 => highest.
FLAGVER....specifies the version of the flagging table to be applied.
0 => highest numbered table.
<0 => no flagging to be applied.
DOBAND.....If true (>0) then correct the data for the shape of the
antenna bandpasses using the BP table specified by BPVER.
The correction has five modes:
(a) if DOBAND=1 all entries for an antenna in the table
are averaged together before correcting the data.
(b) if DOBAND=2 the entry nearest in time (including
solution weights) is used to correct the data.
(c) if DOBAND=3 the table entries are interpolated in
time (using solution weights) and the data are then
corrected.
(d) if DOBAND=4 the entry nearest in time (ignoring
solution weights) is used to correct the data.
(e) if DOBAND=5 the table entries are interpolated in
time (ignoring solution weights) and the data are then
corrected.
IMAGR uses DOBAND as the nearest integer; 0.1 is therefore
"false".
BPVER......Specifies the version of the BP table to be applied
0 => highest numbered table.
<0 => no bandpass correction to be applied.
SMOOTH.....Specifies the type of spectral smoothing to be applied to
a uv database . The default is not to apply any smoothing.
The elements of SMOOTH are as follows:
SMOOTH(1) = type of smoothing to apply: 0 => no smoothing
To smooth before applying bandpass calibration
1 => Hanning, 2 => Gaussian, 3 => Boxcar, 4 => Sinc
To smooth after applying bandpass calibration
5 => Hanning, 6 => Gaussian, 7 => Boxcar, 8 => Sinc
SMOOTH(2) = the "diameter" of the function, i.e. width
between first nulls of Hanning triangle and sinc
function, FWHM of Gaussian, width of Boxcar. Defaults
(if < 0.1) are 4, 2, 2 and 3 channels for SMOOTH(1) =
1 - 4 and 5 - 8, resp.
SMOOTH(3) = the diameter over which the convolving
function has value - in channels. Defaults: 1,3,1,4
times SMOOTH(2) used when input SMOOTH(3) < net
SMOOTH(2).
DOACOR.....> 0 => include autocorrelations as well as cross
correlation data.
OUTNAME....Output UV file name (name). Standard defaults.
OUTCLASS...Output UV file name (class). Standard defaults.
OUTSEQ.....Output UV file name (seq. #). 0 => highest unique
OUTDISK....Disk drive # of output UV file. 0 => highest with space
for the file.
WEIGHTIT...If > 0, change the data weights by a function of the
bandpass amplitude. Choices are:
0 - weight = weight_in / (BPamp)**2
1 - weight = weight_in / (BPamp)
2 - weight = weight_in / (BPamp)**0.5
Value 0 corresponds to the assumption that the noise is
independent of channel before applying the bandpass
calibration which is a multiplication by "BPamp".
FQCENTER,..> 0 => Change frequency axis reference pixel to
Nchan / 2 + 1
else => do not change reference pixel
BADDISK....The disk numbers to avoid for scratch files (sorting
tables mostly).
EXPLAIN SECTION