AIPS HELP file for RLCAL in 31DEC25
As of Wed Dec 11 8:34:43 2024
RLCAL: Task to do right - left phase self-cal
INPUTS
INNAME Input UV file name (name)
INCLASS Input UV file name (class)
INSEQ 0.0 9999.0 Input UV file name (seq. #)
INDISK 0.0 9.0 Input UV file disk unit #
Data selection (multisource):
CALSOUR Source to use (only 1)
QUAL -10.0 Calibrator qualifier -1=>all
CALCODE Calibrator code ' '=>all
TIMERANG Time range to use.
SELBAND Bandwidth to select (kHz)
SELFREQ Frequency to select (MHz)
FREQID Freq. ID to select.
BIF 0.0 100.0 Lowest IF number 0=>all
EIF 0.0 100.0 Highest IF number 0=>all
ANTENNAS Antennas to solve for.
UVRANGE 0.0 UV range in kilolamdba
SUBARRAY 0.0 1000.0 Subarray, 0=>all
Cal. info for input:
DOCALIB -1.0 101.0 > 0 calibrate data & weights
> 99 do NOT calibrate weights
GAINUSE CAL table to apply.
CLEAN map (optional)
DOPOL -1.0 10.0 If >0 correct polarization.
PDVER PD table to apply (DOPOL>0)
BLVER BL table to apply.
FLAGVER Flag table version
DOBAND -1.0 10.0 If >0 apply bandpass cal.
Method used depends on value
of DOBAND (see HELP file).
BPVER Bandpass table version
SMOOTH Smoothing function. See
HELP SMOOTH for details.
ICHANSEL Array of start and stop chan
numbers, plus a channel
increment and IF to be used
to select channels to sum to
find the right-left phase
0 => all channels
IN2NAME Cleaned map name (name)
IN2CLASS Cleaned map name (class)
IN2SEQ 0.0 9999.0 Cleaned map name (seq. #)
IN2DISK 0.0 9.0 Cleaned map disk unit #
INVERS -1.0 46655.0 CC file version #.
NCOMP # comps to use for model.
1 value per field
FLUX Lowest CC component used.
NMAPS 0.0 4096.0 No. Clean map files
CMETHOD Modeling method:
'DFT','GRID',' '
CMODEL Model type: 'COMP','IMAG'
'SUBI' (see HELP re images)
PMODEL Source poln. model
SPECPARM Spectral index: I Q U V for
each CALSOUR
SOLINT Soln. interval (min) 0=>10.
PRTLEV 0.0 10.0 Print statistics 0=>none
1 = some, 2 = lots. Use 1.
BADDISK 0.0 9.0 Disk no. not to use for
scratch files.
HELP SECTION
PCAL
Task: This task reads a UV file and applies the calibration to the RL
and LR polarizations writing to a scratch file. It then
computes visibility models for Q and U using either PMODEL and
SPECPARM or Q and U images with Clean Components. For each
solution interval determined by SOLINT and the index table if
any, it determines the one phase to be added to all left-hand
solutions to bring the model and data as close together as
possible. An SN table is written.
A spectral mode has not been introduced since it is believed
that the right-left instability is not particularly channel
dependent.
Adverbs:
INNAME.....Input UV file name (name). Standard defaults.
INCLASS....Input UV file name (class). Standard defaults.
INSEQ......Input UV file name (seq. #). 0 => highest.
INDISK.....Disk drive # of input UV file. 0 => any.
The following are used for multisource data files only:
CALSOUR....The one source name to be used.
QUAL.......Only sources with a source qualifier number in the SU
table matching QUAL will be used if QUAL is not -1.
CALCODE....Calibrators may be selected on the basis of the
calibrator code:
' ' => any calibrator code selected
'* ' => any non blank code (cal. only)
'-CAL' => blank codes only (no calibrators)
anything else = calibrator code to select.
NB: The CALCODE an QUAL adverbs allow correct selection
of a single source in cases where more than "source" in a
data set has the same name.
The following may be used for all data files (except as noted):
TIMERANG...Time range of the data to be used. In order:
Start day, hour, min. sec,
end day, hour, min. sec. Days relative to ref.
date.
SELBAND....Bandwidth of data to be selected. If more than
one IF is present SELBAND is the width of the
first IF required. Units = kHz. For data which
contain multiple bandwidths/frequencies the task
will insist that some form of selection be made
by frequency or bandwidth.
SELFREQ....Frequency of data to be selected. If more than
one IF is present SELFREQ is the frequency of the
first IF required. Units = MHz.
FREQID.....Frequency identifier to select (you may determine
which is applicable from the OPTYPE='SCAN' listing
produced by LISTR). If either SELBAND or SELFREQ
are set, their values override that of FREQID.
However, setting SELBAND and SELFREQ may result in
an ambiguity. In that case, the task will request
that you use FREQID.
BIF........First IF to process. 0 => 1. If the models are rather
frequency dependent, then one may have to do solutions
one IF at a time.
EIF........Highest IF to process. 0=>all higher than BIF
ANTENNAS...A list of the antennas to be used in the solution
process.
UVRANGE....Range of projected spacings to be included in
1000's of wavelengths. 0 => 1, 1.E10
SUBARRAY...Subarray number to use. 0=>all.
DOCALIB....If true (>0), calibrate the data using information in the
specified Cal (CL) table for multi-source or SN table for
single-source data. Also calibrate the weights unless
DOCALIB > 99 (use this for old non-physical weights).
GAINUSE....version number of the CL or SN table to apply to
the data. 0 => highest.
DOPOL......If > 0 then correct data for instrumental polarization as
represented in the AN or PD table. This correction is
only useful if PCAL has been run or feed polarization
parameters have been otherwise obtained. See HELP DOPOL
for available correction modes: 1 is normal, 2 and 3 are
for VLBI. 1-3 use a PD table if available; 6, 7, 8 are
the same but use the AN (continuum solution) even if a PD
table is present.
PDVER......PD table to apply if PCAL was run with SPECTRAL true and
0 < DOPOL < 6. <= 0 => highest.
BLVER......Version number of the baseline based calibration
(BL) table to appply. <0 => apply no BL table,
0 => highest.
FLAGVER....Specifies the version of the flagging table to be
applied. 0 => highest numbered table. <0 => no flagging
to be applied.
DOBAND.....If true (>0) then correct the data for the shape of the
antenna bandpasses using the BP table specified by BPVER.
The correction has five modes:
(a) if DOBAND=1 all entries for an antenna in the table
are averaged together before correcting the data.
(b) if DOBAND=2 the entry nearest in time (including
solution weights) is used to correct the data.
(c) if DOBAND=3 the table entries are interpolated in
time (using solution weights) and the data are then
corrected.
(d) if DOBAND=4 the entry nearest in time (ignoring
solution weights) is used to correct the data.
(e) if DOBAND=5 the table entries are interpolated in
time (ignoring solution weights) and the data are then
corrected.
BPVER......Specifies the version of the BP table to be applied.
<0 => no bandpass correction done.
SMOOTH.....Specifies the type of spectral smoothing to be applied to
a uv database . The default is not to apply any smoothing.
The elements of SMOOTH are as follows:
SMOOTH(1) = type of smoothing to apply: 0 => no smoothing
To smooth before applying bandpass calibration
1 => Hanning, 2 => Gaussian, 3 => Boxcar, 4 => Sinc
To smooth after applying bandpass calibration
5 => Hanning, 6 => Gaussian, 7 => Boxcar, 8 => Sinc
SMOOTH(2) = the "diameter" of the function, i.e. width
between first nulls of Hanning triangle and sinc
function, FWHM of Gaussian, width of Boxcar. Defaults
(if < 0.1) are 4, 2, 2 and 3 channels for SMOOTH(1) =
1 - 4 and 5 - 8, resp.
SMOOTH(3) = the diameter over which the convolving
function has value - in channels. Defaults: 1,3,1,4
times SMOOTH(2) used when input SMOOTH(3) < net
SMOOTH(2).
ICHANSEL.. Array of start, stop, and increment channel numbers plus
an IF used for channel selection in the averaging to
compute the average values used for solving for the phase
difference. Up to 20 sets if channels/IF may be entered.
The first having ICHANSEL(2,i) <= 0 terminates the list.
ICHANSEL(4,i) is the IF number, with <= 0 meaning all
IFs. If an IF has no ICHANSEL set for it, then all
channels are used.
IN2NAME....Cleaned map name (name). Standard defaults.
Note: a CLEAN image for only a single source may be given
although it may be in a multi-source file. A Qpol and a
Upol image of the same name are expected. If the source
table contains a flux, then that flux will be used to
scale the components model to obtain the stated total
flux. This is needed since initial Cleans may not obtain
the full flux even though they represent all the
essentials of the source structure. IN2NAME and IN2CLASS
cause PMODEL to be ignored.
IN2CLASS...Cleaned map name (class). The value given should be for
the Qpol image, the U pol image will be assumed to be the
same except for an initial U in the class.
IN2SEQ.....Cleaned map name (seq. #). These should be the same for
Q and U images.
IN2DISK....Disk drive # of cleaned map. 0 => any.
INVERS.....CC file version #. 0=> highest numbered version
NCOMP......Number of Clean components to use for the model, one
value per field. If all values are zero, then all
components in all fields are used. If any value is not
zero, then abs(NCOMP(i)) (or fewer depending on FLUX and
negativity) components are used for field i, even if
NCOMP(i) is zero. If any of the NCOMP is less than 0,
then components are only used in each field i up to
abs(NCOMP(i)), FLUX, or the first negative whichever
comes first. If abs(NCOMP(i)) is greater than the number
of components in field i, the actual number is used. For
example
NCOMP = -1,0
says to use one component from field one unless it is
negative or < FLUX and no components from any other
field. This would usually not be desirable.
NCOMP = -1000000
says to use all components from each field up to the
first negative in that field.
NCOMP = -200 100 23 0 300 5
says to use no more than 200 components from field 1, 100
from field 2, 23 from field 3, 300 from field 5, 5 from
field 6 and none from any other field. Fewer are used if
a negative is encountered or the components go below
FLUX.
FLUX.......Only components > FLUX in absolute value are used in the
model.
NMAPS......Number of image files to use for model. For multi-scale
models, set NMAPS = NFIELD * NGAUSS to include the Clean
components of the extended resolutions. If more than one
file is to be used, the NAME, CLASS, DISK and SEQ of the
subsequent image files will be the same as the first file
except that the LAST 3 or 4 characters of the CLASS will
be an increasing sequence above that in IN2CLASS. Thus,
if INCLASS='ICL005', classes 'ICL005' through 'ICLnnn'
or 'ICnnnn', where nnn = 5 + NMAPS - 1 will be used. Old
names (in which the 4'th character is not a number) are
also supported: the last two characters are '01' through
'E7' for fields 2 through 512. In old names, the highest
field number allowed is 512; in new names it is 4096.
CMETHOD....This determines the method used to compute the
model visibility values.
'DFT' uses the direct Fourier transform, this
method is the most accurate.
'GRID' does a gridded-FFT interpolation model
computation.
' ' allows the program to use the fastest
method.
NOTE: when using a model derived from data with
different uv sampling it is best to use 'DFT'
CMODEL.....This indicates the type of input model; 'COMP' means that
the input model consists of Clean components, 'IMAG'
indicates that the input model consists of images.
'SUBI' means that the model consists of a sub-image of
the original IMAGR output. If CMODEL is ' ' Clean
components will be used if present and the image if not.
SUBI should work for sub-images made with DO3DIM true and
sib-images of the central facet made with DO3DIM false,
but probably will not work well for shifted facets with
DO3DIM false. Use BLANK rather than SUBIM in such cases.
CALIB will set a scaling factor to correct image units
from JY/BEAM to JY/PIXEL for image models. If the source
table contains a flux, then that flux will be used to
scale the components model to obtain the stated total
flux. This is needed since initial Cleans may not obtain
the full flux even though they represent all the
essentials of the source structure.
PMODEL.....A single component model to be used instead of a CLEAN
components model; if PMODEL(1) > 0, then use of this
model is requested.
PMODEL(1) = I flux density (Jy)
PMODEL(2) = Q flux density (Jy)
PMODEL(3) = U flux density (Jy)
PMODEL(4) = V flux density (Jy)
PMODEL(5) = X offset in sky (arcsec)
PMODEL(6) = Y offset in sky (arcsec)
PMODEL(1) must be > 0 to request use of PMODEL for the
model even though the I value is not otherwise used.
PMODEL is ignored if either IN2NAME or IN@CLASS is not
blank.
SPECPARM...The spectral index in I, Q, U, and V for each source to
be used only when PMODEL is used.
SOLINT.....Time interval to average data before determining
correction in min. 0 => scan average or 10 minutes if no
NX table.
PRTLEV.....If this value is larger than 0.0 then the intermediate
diagnostics and solutions will be given on the monitor
terminal and the message file.
BADDISK....Disk numbers on which scratch files are not to
be placed.
EXPLAIN SECTION