AIPS HELP file for VLBAKRGP in 31DEC25
As of Wed Dec 11 9:06:38 2024
VLBAKRGP: Procedure to fringe fit and calibrate phase ref. data
INPUTS
Input uv data.
INNAME UV file name (name)
INCLASS UV file name (class)
INSEQ 0.0 9999.0 UV file name (seq. #)
INDISK 0.0 9.0 UV file disk drive #
CALSOUR Source list to fringe fit
NO DEFAULT
TIMERANG Time range to use.
BCHAN 0.0 2048.0 Lowest channel number 0=>all
FOR SPEC. LINE EXP. ONLY
ECHAN 0.0 2048.0 Highest channel number
FOR SPEC. LINE EXP. ONLY
GAINUSE CL table to apply.
REFANT Reference antenna
SUBARRAY Subarray 0=>all
SEARCH 0.0 1000.0 Prioritized reference antenna
list - supplements REFANT
SOLINT Solution interval (min)
0 => 10 min
OPCODE 'ZDEL' => zero delays
for more, See HELP KRING
FOR SPEC. LINE EXP. ONLY
CPARM for strong sources, it is
only necessary to set
CPARM(1) and CPARM(8).
1 min. int. time (sec) 0 => 2
8 <=0 rereference solutions
this should be 1 for
polarization experiments.
for rest see HELP VLBAKRGP
SOURCES Source list to calibrate: Any
sources in the SOURCE list
that are not in the CALSOUR
list will be phase referenced
to the FIRST source in the
CALSOUR list.
INTERPOL Interpolation function:
'2PT','SIMP','AMBG','CUBE',
'SELF'
BADDISK 0.0 15.0 Disk no. not to use for
scratch files.
HELP SECTION
VLBAKRGP
Type: Procedure
Use: This procedure does antenna based fringe fitting for phase
referencing experiments using KRING and then applies those
corrections using CLCAL. For more information on KRING and
CLCAL see their respective HELP/EXPLAIN files.
Type RUN VLBAUTIL to make the VLBAKRGP procedure
available.
Adverbs:
INNAME.....Input UV file name (name). Standard defaults.
INCLASS....Input UV file name (class). Standard defaults.
INSEQ......Input UV file name (seq. #). 0 -> highest.
INDISK.....Disk drive # of input UV file. 0 -> any.
CALSOUR....List of sources for which calibration constants are to be
determined. The default is not permitted nor are '-'
sources, as you must select a phase reference source. The
FIRST source in the list is the phase reference source and
will be used to phase reference any sources in the SOURCES
list that are NOT in the CALSOUR list.
TIMERANG...Time range of the data to be used. In order: Start day,
hour, min. sec, end day, hour, min. sec. Days relative to
reference date.
BCHAN......First channel to use. 0=>all. If this is not a spectral
line experiment, leave as default.
ECHAN......Highest channel to use. 0=>all higher than BCHAN; If this
is not a spectral line experiment, leave as default.
GAINUSE....(multisource) version number of the CL table to apply to
the data. 0 => highest.
REFANT.....The desired reference antenna for phases. Note that
the desired refant is not required to be the primary search
antenna. You should choose the REFANT to be an antenna
that is present during most of the observation.
SUBARRAY...Subarray number to use. 0=>all.
SEARCH.....List of prioritized reference antennas to be used for
fringe searching during the FFT stage. KRING constructs
an internal search list to determine the order in which to
perform the FFTs. This search list is constructed by first
copying the elements of SEARCH. Finally, all remaining
antennas antennas are appended to the search list in
numerical order. You can limit the search to only the
specified elements of the SEARCH list by setting CPARM(6).
Only baselines where at least one antenna appears in the
search list will be searched for fringes.
You should explicitly order the antennas in terms of decreasing
sensitivity if at all possible.
SOLINT.....The solution interval. Note that this is only a
recommended solution interval. The actual solution interval
used by KRING will be changed in order to divide each scan
evenly into an integral number of data chunks.
SOLINT is in minutes; the default value (SOLINT=0) is 10
minutes. SOLINT values larger than 10 are reset to 10 minutes
unless CPARM(9)>0. NB: If SOLINT > 0.75*Scan, SOLINT = Scan.
OPCODE.....Solution masking to be performed _after_ fringe-fitting
' ' no masking
'ZPHS' zero phases in output SN table
'ZRAT' zero rates in output SN table
'ZDEL' zero delays in output SN table
If CPARM(8)>0, OPCODE is forced = ' '.
If this is not a spectral line experiment leave this
as the default.
CPARM......CPARM(1) and CPARM(8) are the only CPARMs that it is essential
to set, for strong sources the rest can be left as default.
CPARM(1)...The minimum integration time of the data (sec);
0 => 2 'VLBA' seconds
It is important to get this number right to within 20 percent.
E.g., if you've averaged up 1 second data to 10 seconds,
setting this to 10 is okay so long as there are only a
very few points with shorter than 10 second integration
times. If you set this to 1 second, you will regret it.
CPARM(2)...The delay window FW to search (nsec) centered on 0 delay.
<= 0 => full Nyquist range.
[Use SOLMOD to turn off the delay search.]
CPARM(3)...The rate window FW to search (mHz) centered on 0 rate.
<= 0 => full Nyquist range.
[Use SOLMOD to turn off the rate search.]
CPARM(4)...The minimum allowed signal-to-noise ratio. <0 => 3
The SNR calculation is described in AIPS Memo 101.
[You might consider setting this to 5.]
CPARM(5)...Number of baseline combinations to use in the initial,
FFT fringe-search (1-3). Larger values increase the
point source sensitivity but reduce the sensitivity to
extended sources when an accurate model is not available.
0=>3.
[Solutions formed using combinations of baselines are
marked with a plus for singly indirect combinations and
with two pluses for doubly indirect combinations.]
CPARM(6)...If CPARM(6)=1, only baselines to those antennas on the
SEARCH list are searched during the FFT stage. Otherwise,
other baselines are eventually searched until either fringes
have been found to each antenna, or no baselines remain to
be searched.
CPARM(7)...If >0, RR and LL data are averaged together and only a
single solution is determined for both polarizations. This
is useful when reducing polarization data.
CPARM(8)...If <= 0 then the phase, rate and delays will be
re-referenced to a common antenna. CPARM(8)=1 is only
desirable for VLBI polarization data. Using this option also
forces OPCODE = ' '.
CPARM(9)...If SOLINT>10 is desired, you must set CPARM(9)>0 . This
is necessary to prevent accidentally requesting more memory
than your computer can deliver and locking up computer.
CPARM(10)..Try Hard Option. If CPARM(10)>=0, When KRING is ready to
do the initial FFT-based fringe search, it will first try
to initialize residual fringe-fit delay and rate solns for
each antenna using an average of all good solutions found
in the SN table. Only those antennas for which acceptable
solutions are not found will then be FFTd to find fringes.
This does not preclude the final Least Squares refinement.
[20 Oct 1999, it has been reported that CPARM(10) is broken -
it may trash the solutions - dont try it unless you have
the time to re-run KRING if need-be.]
SOURCES....Sources to calibrate. If this is left blank then all
the sources are calibrated at once using the INTERPOL
(i.e. CLCAL is only run once) and phase referenced to the
FIRST source in the CALSOUR list. If sources are listed
then CLCAL is run once for each source using the
interpolation method stated in INTERPOL. Any sources
that are in the SOURCE list but not in the CALSOUR list
will be phase referenced to the FIRST source in the
CALSOUR list.
INTERPOL...The type of interpolation to be applied to the SN table:
' ' = linear vector interpolation with no SN smoothing.
'2PT ' = linear vector interpolation with no SN smoothing.
'SELF' = Use only SN solution from same source which
is closest in time.
'SIMP' = Simple linear phase connection between SN phase
entries, assumes phase difference less than 180
degrees.
'AMBG' = Linear phase connection using rates to resolve
phase ambiguities.
'CUBE' = As AMBG but fit third order polynomial to phases
and rates.
BADDISK....A list of disk numbers to be avoided when creating scratch
files.
EXPLAIN SECTION
VLBAKRGP: Procedure to perform antenna based fringe fitting
for phase referenced data using KRING and then apply
these corrections using CLCAL.
Documenter: Amy Mioduszewski
Related Programs: VLBAUTIL, KRING, CLCAL, VLBAKRNG, VLBAFRGP
This should be done after solving for the instrumental phase
corrections (VLBAPCOR) and before applying all the calibration
and averaging (SPLIT/SPLAT). After VLBAKRGP is run it is ESSENTIAL
to check the solutions in POSSM setting GAINUSE to the CL table
output by VLBAKRGP. VLBAKRGP will produce the highest SN and
CL table. For details on KRING and CLCAL see their HELP/EXPLAIN
files.
It should be noted that this procedure will do the same thing as
VLBAKRNG if all SOURCES are in the CALSOUR list. In order to have
the target source phase referenced it must be missing from the CALSOUR
list and in the SOURCES list or, alternatively, the SOURCES list must be
left blank. The first option caused the sources listed in SOURCES but
missing from CALSOUR to be phase referenced to CALSOUR(1), while the
second caused ALL the sources to be phase referenced to CALSOUR(1).
VLBAKRGP assumes:
1. there is only one FREQID
2. that all IFs should be calibrated
3. that all antennas should be calibrated
4. that the entire uv range should be calibrated
5. that the highest FG table is the one that should be applied
6. that this is a multisource file
Steps in VLBAKRGP:
1. Runs KRING, which will do antenna based fringe fits. This
will produce the highest SN table.
2. Runs CLCAL, with OPCODE 'CALI', SNVER output SN table from
KRING; GAINVER input GAINUSE and GAINUSE = highest CL table +1.
Output should be highest CL table. If SOURCES is blank then
CLCAL is run only once and phase referenced to CALSOUR(1). If
SOURCES is not blank then CLCAL is run for each source in
SOURCES. If the source in SOURCES is in the CALSOUR list then
it is referenced to itself, if not it is phase referenced to
CALSOUR(1).
After VLBAKRGP is run and the solutions are checked in POSSM, SPLIT
or SPLAT should be run with GAINUSE set to the CL output from VLBAKRGP
and DOCAL=2.